Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate of 2.5 cars per hour. The service rate is 5 cars per hour. Assume that arrivals follow a Poisson probability distribution and that service times follow an exponential probability distribution. What is the average number of cars in the system

Sagot :

Answer:

the average number of car(s) in the system is 1

Step-by-step explanation:

Given the data in the question;

Arrival rate; λ = 2.5 cars per hour

Service time; μ = 5 cars per hour

Since Arrivals follows Poisson probability distribution and service times follows exponential probability distribution.

Lq = λ² / [ μ( μ - λ ) ]

we substitute

Lq = (2.5)² / [ 5( 5 - 2.5 ) ]

Lq = 6.25 / [ 5 × 2.5 ]

Lq = 6.25 / 12.5

Lq = 0.5

Now, to get the average number of cars in the system, we say;

L = Lq + ( λ / μ )

we substitute

L = 0.5 + ( 2.5 / 5 )

L = 0.5 + 0.5

L = 1

Therefore, the average number of car(s) in the system is 1