Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A 1.64 kg mass on a spring oscillates horizontal frictionless surface. The motion of the mass is described by the equation: X = 0.33cos(3.17t). In the equation, x is measured in meters and t in seconds. What is the maximum energy stored in the spring during an oscillation?

Sagot :

Answer:

[tex]K.E_{max}=0.8973J[/tex]

Explanation:

From the question we are told that:

Mass [tex]m=1.64kg[/tex]

Equation of Mass

[tex]X=0.33cos(3.17t)[/tex]...1

Generally equation for distance X is

[tex]X=Acos(\omega t)[/tex]...2

Therefore comparing equation

Angular Velocity [tex]\omega=3.17rad/s[/tex]

Amplitude A=0.33

Generally the equation for Max speed is mathematically given by

[tex]V_{max}=A\omega[/tex]

[tex]V_{max}=0.33*3.17[/tex]

[tex]V_{max}=1.0461m/s[/tex]

Therefore

[tex]K.E_{max}=0.5mv^2[/tex]

[tex]K.E_{max}=0.5*1.64*(1.0461)^2[/tex]

[tex]K.E_{max}=0.8973J[/tex]