Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
a)[tex]V=1.067\: m/s[/tex]
b)[tex]v=434.65\: m/s [/tex]
Explanation:
a)
Using the conservation of energy between the moment when the bullet hit the block and the maximum compression of the spring.
[tex]\frac{1}{2}MV^{2}=\frac{1}{2}k\Delta x^{2}[/tex]
Where:
- M is the bullet-block mass (0.00535 kg + 2.174 kg = 2.17935 kg)
- V is the speed of the system
- k is the spring constant (6.17*10² N/m)
- Δx is the compression of the spring (0.0634 m)
Then, let's find the initial speed of the bullet-block system.
[tex]V^{2}=\frac{k\Delta x^{2}}{M}[/tex]
[tex]V=\sqrt{\frac{6.17*10^{2}*0.0634^{2}}{2.17935}}[/tex]
[tex]V=1.067\: m/s[/tex]
b)
Using the conservation of momentum we can find the velocity of the bullet.
[tex]mv=MV[/tex]
[tex]v=\frac{MV}{m}[/tex]
[tex]v=\frac{2.17935*1.067}{0.00535}[/tex]
[tex]v=434.65\: m/s [/tex]
I hope it helps you!
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.