Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
a)[tex]V=1.067\: m/s[/tex]
b)[tex]v=434.65\: m/s [/tex]
Explanation:
a)
Using the conservation of energy between the moment when the bullet hit the block and the maximum compression of the spring.
[tex]\frac{1}{2}MV^{2}=\frac{1}{2}k\Delta x^{2}[/tex]
Where:
- M is the bullet-block mass (0.00535 kg + 2.174 kg = 2.17935 kg)
- V is the speed of the system
- k is the spring constant (6.17*10² N/m)
- Δx is the compression of the spring (0.0634 m)
Then, let's find the initial speed of the bullet-block system.
[tex]V^{2}=\frac{k\Delta x^{2}}{M}[/tex]
[tex]V=\sqrt{\frac{6.17*10^{2}*0.0634^{2}}{2.17935}}[/tex]
[tex]V=1.067\: m/s[/tex]
b)
Using the conservation of momentum we can find the velocity of the bullet.
[tex]mv=MV[/tex]
[tex]v=\frac{MV}{m}[/tex]
[tex]v=\frac{2.17935*1.067}{0.00535}[/tex]
[tex]v=434.65\: m/s [/tex]
I hope it helps you!
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.