Answer:
the operating characteristics have been solved below
Step-by-step explanation:
we have an average of 10 minutes per customers
μ = mean service rate = 60/10 = 6 customers in one hr
the average number of customers that are waiting in line
mean arrival λ = 2.5
μ = 6
[tex]Lq = \frac{2.5^{2} }{6(6-2.5)} \\[/tex]
= 6.25/21
= 0.2976
we calculate the average number of customers that are in the system
[tex]L=Lq+\frac{2.5}{6}[/tex]
= 0.2976+0.4167
= 0.7143
we find the average time that a customer spends in waiting
[tex]Wq=\frac{0.2976}{2.5}[/tex]
= 0.1190 hours
when converted to minutes = 0.1190*60 = 7.1424 minutes
[tex]0.1190+\frac{1}{6}[/tex]
=0.2857
probability that arriving customers would wait for the service
= 2.5÷6 = 0.4167