Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
0.1512 = 15.12% probability that fewer than four tornadoes occur in a three-week period.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
In a given region, the number of tornadoes in a one-week period is modeled by a Poisson distribution with mean 2
Three weeks, so [tex]\mu = 2*3 = 6[/tex]
Calculate the probability that fewer than four tornadoes occur in a three-week period.
This is:
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-6}*6^{0}}{(0)!} = 0.0025[/tex]
[tex]P(X = 1) = \frac{e^{-6}*6^{1}}{(1)!} = 0.0149[/tex]
[tex]P(X = 2) = \frac{e^{-6}*6^{2}}{(2)!} = 0.0446[/tex]
[tex]P(X = 3) = \frac{e^{-6}*6^{3}}{(3)!} = 0.0892[/tex]
Then
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0025 + 0.0149 + 0.0446 + 0.0892 = 0.1512[/tex]
0.1512 = 15.12% probability that fewer than four tornadoes occur in a three-week period.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.