Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Newtons. What is the frequency of this mode of vibration

Sagot :

Answer:

the frequency of this mode of vibration is 138.87 Hz

Explanation:

Given;

length of the copper wire, L = 1 m

mass per unit length of the copper wire, μ = 0.0014 kg/m

tension on the wire, T = 27 N

number of segments, n = 2

The frequency of this mode of vibration is calculated as;

[tex]F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz[/tex]

Therefore, the frequency of this mode of vibration is 138.87 Hz