Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Complete Question
Determine the end (final) value of n in a hydrogen atom transition, if the electron starts in n=4 and the atom emits a photon of light with a wavelength of 486 nm. Group of answer choices
Answer:
[tex]n=2[/tex]
Explanation:
From the question we are told that:
Wavelength [tex]\lambda=486nm=>486*10^{-9}[/tex]
Generally the equation for Atom Transition is mathematically given by
[tex]\frac{1}{\lambda}=R_{\infty }(\frac{1}{n_1^2}-\frac{1}{n_2^2})[/tex]
Where
Rydberg constant [tex]R_{\infty}=1.097*10^7[/tex]
Therefore
[tex]\frac{1}{486*10^{-9}}=1.097*10^7*(\frac{1}{n_1^2}-\frac{1}{4^2})[/tex]
[tex](\frac{1}{n_1^2}-\frac{1}{4^2})=\frac{1}{486*10^{-9}*1.097*10^7}[/tex]
[tex]n_1^2=3.98[/tex]
[tex]n=1.99[/tex]
[tex]n=2[/tex]
Using the Rydberg formula, the final state of the electron is n=2.
Using the Rydberg formula;
1/λ = R(1/nf^2 - 1/ni^2)
Where;
λ = wavelength
nf = final state
ni = initial state
R = Rydberg constant
When λ = 486 × 10^-9 m and ni = 4, R = 1.097 × 10^7 m-1
1/486 × 10^-9 = 1.097 × 10^7(1/nf^2 - 1/4^2)
0.188 = 1/nf^2 - 0.0625
1/nf^2 = 0.188 + 0.0625
nf = 2
Missing parts;
Determine the end (final) value of n in the hydrogen atom transition, if electron starts in n-4 and the atom emits a photon of light with a wavelength of 486.
Learn more: https://brainly.com/question/14281129
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.