Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated toward a gold nucleus, and its path was substantially deflected by the Coulomb interaction. If the energy of the doubly charged alpha nucleus was 2.25 MeV, how close (in m) to the gold nucleus (79 protons) could it come before being deflected

Sagot :

Answer:

The answer is "[tex]1.01 \times 10^{-13}[/tex]"

Explanation:

Using the law of conservation for energy. Equating the kinetic energy to the potential energy.

[tex]KE=U=\frac{kqq'}{r}\\\\[/tex]

Calculating the closest distance:

[tex]\to r=\frac{kqq'}{KE}\\\\[/tex]

[tex]=\frac{k(2e)(79e)}{KE}\\\\=\frac{k(2)(79)e^2}{KE}\\\\=\frac{9.0\times 10^9 \ N \cdot \frac{m^2}{c}(2)(79)(1.6 \times10^{-19} \ C)^2}{(2.25\ meV) (\frac{1.6 \times 10^{-13} \ J}{1 \ MeV})}\\\\[/tex]

[tex]=\frac{9.0\times 10^9 \times 2\times 79\times 1.6 \times10^{-19}\times 1.6 \times10^{-19} }{(2.25 \times 1.6 \times 10^{-13}) }\\\\=\frac{3,640.32\times 10^{-29}}{3.6 \times 10^{-13} }\\\\=\frac{3,640.32}{3.6} \times 10^{-16}\\\\=1011.2 \times 10^{-16}\\\\=1.01 \times 10^{-13}[/tex]

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.