At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
0.7588 = 75.88% probability that more than 1 vessel transporting nuclear weapons was destroyed
Step-by-step explanation:
The vessels are destroyed without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
Fleet of 17 means that [tex]N = 17[/tex]
4 are carrying nucleas weapons, which means that [tex]k = 4[/tex]
9 are destroyed, which means that [tex]n = 9[/tex]
What is the probability that more than 1 vessel transporting nuclear weapons was destroyed?
This is:
[tex]P(X > 1) = 1 - P(X \leq 1)[/tex]
In which
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,17,9,4) = \frac{C_{4,0}*C_{13,9}}{C_{17,9}} = 0.0294[/tex]
[tex]P(X = 1) = h(1,17,9,4) = \frac{C_{4,1}*C_{13,8}}{C_{17,9}} = 0.2118[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.0294 + 0.2118 = 0.2412[/tex]
[tex]P(X > 1) = 1 - P(X \leq 1) = 1 - 0.2412 = 0.7588[/tex]
0.7588 = 75.88% probability that more than 1 vessel transporting nuclear weapons was destroyed
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.