Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
the centripetal acceleration at a point that is 0.0897 m from the center of the disc is 1143.8 m/s²
Explanation:
Given the data in the question;
centripetal acceleration a[tex]_c[/tex]₁ = 241 m/s²
radius r₁ = 0.0189 m
radius r₂ = 0.0897 m
centripetal acceleration a[tex]_c[/tex]₂ = ? m/s²
since the rotational period will be the same for the two disk,
we use the centripetal acceleration formula a[tex]_c[/tex] = (4π²r/T²) to find the rotational period for the first disk.
a[tex]_c[/tex]₁ = (4π²r₁/T²)
make T² subject of formula
T² = 4π²r₁ / a[tex]_c[/tex]₁
we substitute
T² = ( 4 × π² × 0.0189 ) / 241
T² = 0.00309602528 s²
Now we use the same formula to find a[tex]_c[/tex]₂
a[tex]_c[/tex]₂ = ( 4π²r₂ / T² )
we substitute
a[tex]_c[/tex]₂ = ( 4 × π² × 0.0897 ) / 0.00309602528
a[tex]_c[/tex]₂ = 1143.8 m/s²
Therefore, the centripetal acceleration at a point that is 0.0897 m from the center of the disc is 1143.8 m/s²
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.