At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
There are two alternatives: (i) Polar coordinate system (a.k.a. Circular coordinate system), (ii) Elliptic coordinate system.
Step-by-step explanation:
There are two alternative ways of describing the location of points on a plane:
(i) Polar coordinate system (a.k.a. Circular coordinate system).
(ii) Elliptic coordinate system.
Now we proceed to explain briefly the characteristic of each option:
Polar coordinate system: [tex](r, \theta)[/tex]
Where:
[tex]r[/tex] - Distance of the point with respect to origin.
[tex]\theta[/tex] - Direction of the vector between origin and point with respect to the +x semiaxis, in sexagesimal degrees.
The formulae for each component in terms of Cartesian coordinates are described below:
[tex]r = \sqrt{x^{2}+y^{2}}[/tex] (1)
[tex]\theta = \tan^{-1} \frac{y}{x}[/tex] (2)
Elliptic coordinate system: [tex](\mu, \nu)[/tex]
Where [tex]\mu[/tex] and [tex]\nu[/tex] are elliptical coordinates.
The formulae for each component in terms of Cartesian coordinates are described below:
[tex]x = a\cdot \cosh \mu \cdot \cos \nu[/tex] (3)
[tex]y = a \cdot \sinh \mu \cdot \sin \nu[/tex] (4)
Where [tex]a[/tex] is the distance between origin and any of the foci along the x axis.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.