Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

1. Find the exact value of sin( a−B), given that sin a=−4/5 and cos B=12/13, with a in quadrant III and B in quadrant IV.

2. Find all real numbers in the interval [0,2pi) that satisfy the equation.

3sec^2 x tan x =4tan x

3. Simplify the following trigonometric expressions, using identities as needed:

sin(x)/1−cos(x) + 1−cos(x)/sin(x)


1 Find The Exact Value Of Sin AB Given That Sin A45 And Cos B1213 With A In Quadrant III And B In Quadrant IV 2 Find All Real Numbers In The Interval 02pi That class=

Sagot :

(1) Recall that

sin(x - y) = sin(x) cos(y) - cos(x) sin(y)

sin²(x) + cos²(x) = 1

Given that α lies in the third quadrant, and β lies in the fourth quadrant, we expect to have

• sin(α) < 0 and cos(α) < 0

• sin(β) < 0 and cos(β) > 0

Solve for cos(α) and sin(β) :

cos(α) = -√(1 - sin²(α)) = -3/5

sin(β) = -√(1 - cos²(β)) = -5/13

Then

sin(α - β) = sin(α) cos(β) - cos(α) sin(β) =  (-4/5) (12/13) - (-3/5) (-5/13)

==>   sin(α - β) = -63/65

(2) In the second identity listed above, multiplying through both sides by 1/cos²(x) gives another identity,

sin²(x)/cos²(x) + cos²(x)/cos²(x) = 1/cos²(x)

==>   tan²(x) + 1 = sec²(x)

Rewrite the equation as

3 sec²(x) tan(x) = 4 tan(x)

3 (tan²(x) + 1) tan(x) = 4 tan(x)

3 tan³(x) + 3 tan(x) = 4 tan(x)

3 tan³(x) - tan(x) = 0

tan(x) (3 tan²(x) - 1) = 0

Solve for x :

tan(x) = 0   or   3 tan²(x) - 1 = 0

tan(x) = 0   or   tan²(x) = 1/3

tan(x) = 0   or   tan(x) = ±√(1/3)

x = arctan(0) +   or   x = arctan(1/√3) +   or   x = arctan(-1/√3) +

x =   or   x = π/6 +   or   x = -π/6 +

where n is any integer. In the interval [0, 2π), we get the solutions

x = 0, π/6, 5π/6, π, 7π/6, 11π/6

(3) You only need to rewrite the first term:

[tex]\dfrac{\sin(x)}{1-\cos(x)} \times \dfrac{1+\cos(x)}{1+\cos(x)} = \dfrac{\sin(x)(1+\cos(x))}{1-\cos^2(x)} = \dfrac{\sin(x)(1+\cos(x)}{\sin^2(x)} = \dfrac{1+\cos(x)}{\sin(x)}[/tex]

Then

[tex]\dfrac{\sin(x)}{1-\cos(x)}+\dfrac{1-\cos(x)}{\sin(x)} = \dfrac{1+\cos(x)+1-\cos(x)}{\sin(x)}=\dfrac2{\sin(x)}[/tex]