Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Given:
The equation is:
[tex]\ln e^{\ln x}+\ln e^{\ln x^2}=2\ln 8[/tex]
To find:
The solution for the given equation.
Solution:
We have,
[tex]\ln e^{\ln x}+\ln e^{\ln x^2}=2\ln 8[/tex]
It can be written as:
[tex]\ln x+\ln x^2=2\ln 8[/tex] [tex][\because \ln e^x=x][/tex]
[tex]\ln (x\cdot x^2)=2\ln 8[/tex] [tex][\because \ln a+\ln b=\ln (ab)][/tex]
[tex]\ln (x^3)=\ln 8^2[/tex] [tex][\because \ln x^n=n\ln x ][/tex]
On comparing both sides, we get
[tex]x^3=8^2[/tex]
[tex]x^3=64[/tex]
Taking cube root, we get
[tex]x=\sqrt[3]{64}[/tex]
[tex]x=4[/tex]
Therefore, the required solution is [tex]x=4[/tex].
Answer:
x=4
Step-by-step explanation:
What is the true solution to the equation below?
ln e Superscript ln x Baseline + ln e Superscript ln x squared Baseline = 2 ln 8
x = 2
x = 4
x = 8
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.