Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Explanation:
You need something that relates distance to what the gravitational pull is. You can set up a complex sort of proportion. What you need is a number that is comparable to 9.81 or you can just use the Gravitational Force formula with a 4 tier fraction.
Givens
x = the additional distance toward outer space above the radius of the earth.
G is the gravitational constant.
m1 = the person's mass (which does not change no matter where you are).
m2 = the earth's mass
F1 = 588 N
F2 = 300 N
Formula
[tex]\frac{F1}{F2} = \frac{588 N}{300N}=\frac{\frac{Gm1*m2/}{6400^2} }{\frac{G*m1*m2}{(6400 + x)^2} }[/tex]
Solution
G*m1*m2 all cancel. So what you get looks like this.
[tex]\frac{588}{300} = \frac{(6400 + x)^2}{6400^2}[/tex]
Cross Multiply
588 * 6400^2 = 300*(6400+x)^2 Now all you need do is solve for x.
x will be in km.
588*40960000 = 300 * (40960000 + 12800x + x^2)
1.2288*10^10 + 3840000x + 300x^2 = 2.408448*10^10
300x^2 + 3840000x + 1.2288*10^10 = 2.408448 * 10^10
Subtract 2.409448 * 10^10 from both sides.
300x^2 + 3840000x - 1,179648 * 10^10
Now use the quadratic formula
I'm guessing I should have converted this to meters because I'm getting ridiculous numbers. They are already large enough as you can see. The method is correct, even if the numbers are not.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.