Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
0.7744 = 77.44% probability of getting two good coils when two coils are randomly selected
Step-by-step explanation:
For each coil, there are only two possible outcomes. Either it is good, or it is not. Since the coil taken is replaced, the probability of choosing a good coil on a trial is independent of any other trial, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
88 out of 100 are good:
This means that [tex]\pi = \frac{88}{100} = 0.88[/tex]
Find the probability of getting two good coils when two coils are randomly selected.
This is P(X = 2) when n = 2. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{2,2}.(0.88)^{2}.(0.12)^{0} = 0.7744[/tex]
0.7744 = 77.44% probability of getting two good coils when two coils are randomly selected
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.