Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
- Reflected over the x-axis
- Compressed by a factor of 0.4.
- Translated 2 units left
Step-by-step explanation:
Given
[tex]y = \sqrt[3]{x}[/tex]
[tex]y' = -(0.4)\sqrt[3]{x-2}[/tex]
Required
The transformation from y to y'
First, y is reflected over the x-axis.
The transformation rule is:
[tex](x,y) \to (x,-y)[/tex]
So, we have:
[tex]y = \sqrt[3]{x}[/tex] becomes
[tex]y' = -\sqrt[3]{x}[/tex]
Next, it was compressed by a scale factor of 0.4
The rule is:
[tex]y' = k * y[/tex]
Where k is the scale factor (i.e. k = 0.4)
So, we have:
[tex]y' = 0.4 * -\sqrt[3]{x}[/tex]
[tex]y' = -(0.4)\sqrt[3]{x}[/tex]
Lastly, the function is translated 2 units left;
The rule is:
[tex](x,y) \to (x-2,y)[/tex]
So, we have:
[tex]y' = -(0.4)\sqrt[3]{x - 2}[/tex]
Answers:
-reflected over the x-axis
-translated 2 units right
-compressed by a factor of 0.4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.