Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]2y^2-7y+6=0[/tex]
Step-by-step explanation:
We are given that [tex]\alpha[/tex] and [tex]\beta[/tex] are the zeroes of the polynomial [tex]6y^2-7y+2[/tex]
[tex]y^2-\frac{7}{6}y+\frac{1}{3}[/tex]
We have to find a quadratic polynomial whose zeroes are [tex]1/\alpha[/tex] and [tex]1/\beta[/tex].
General quadratic equation
[tex]x^2-(sum\;of\;zeroes)x+ product\;of\;zeroes[/tex]
We get
[tex]\alpha+\beta=\frac{7}{6}[/tex]
[tex]\alpha \beta=\frac{1}{3}[/tex]
[tex]\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}[/tex]
[tex]\frac{1}{\alpha}+\frac{1}{\beta}=\frac{7/6}{1/3}[/tex]
[tex]\frac{1}{\alpha}+\frac{1}{\beta}=\frac{7}{6}\times 3=7/2[/tex]
[tex]\frac{1}{\alpha}\times \frac{1}{\beta}=\frac{1}{\alpha \beta}[/tex]
[tex]\frac{1}{\alpha}\times \frac{1}{\beta}=\frac{1}{1/3}=3[/tex]
Substitute the values
[tex]y^2-(7/2)y+3=0[/tex]
[tex]2y^2-7y+6=0[/tex]
Hence, the quadratic polynomial whose zeroes are [tex]1/\alpha[/tex] and [tex]1/\beta[/tex] is given by
[tex]2y^2-7y+6=0[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.