Answered

Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

When P(x) is divided by (x - 1) and (x + 3), the remainders are 4 and 104 respectively. When P(x) is divided by x² - x + 1 the quotient is x² + x + 3 and the remainder is of the form ax + b. Find the remainder.

Sagot :

Pop55

Answer:

The remainder is 3x - 4

Step-by-step explanation:

[Remember] [tex]\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}[/tex]

So, [tex]Dividend = (Quotient)(Divisor) + Remainder[/tex]

In this case our dividend is always P(x).

Part 1

When the divisor is [tex](x - 1)[/tex], the remainder is [tex]4[/tex], so we can say [tex]P(x) = (Quotient)(x - 1) + 4[/tex]

In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x - 1) = 0[/tex]

When solving for [tex]x[/tex], we get

[tex]x - 1 = 0\\x - 1 + 1 = 0 + 1\\x = 1[/tex]

When [tex]x = 1[/tex],

[tex]P(x) = (Quotient)(x - 1) + 4\\P(1) = (Quotient)(1 - 1) + 4\\P(1) = (Quotient)(0) + 4\\P(1) = 0 + 4\\P(1) = 4[/tex]

--------------------------------------------------------------------------------------------------------------

Part 2

When the divisor is [tex](x + 3)[/tex], the remainder is [tex]104[/tex], so we can say [tex]P(x) = (Quotient)(x + 3) + 104[/tex]

In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x + 3) = 0[/tex]

When solving for [tex]x[/tex], we get

[tex]x + 3 = 0\\x + 3 - 3 = 0 - 3\\x = -3[/tex]

When [tex]x = -3[/tex],

[tex]P(x) = (Quotient)(x + 3) + 104\\P(-3) = (Quotient)(-3 + 3) + 104\\P(-3) = (Quotient)(0) + 104\\P(-3) = 0 + 104\\P(-3) = 104[/tex]

--------------------------------------------------------------------------------------------------------------

Part 3

When the divisor is [tex](x^2 - x + 1)[/tex], the quotient is [tex](x^2 + x + 3)[/tex], and the remainder is [tex](ax + b)[/tex], so we can say [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]

From Part 1, we know that [tex]P(1) = 4[/tex] , so we can substitute [tex]x = 1[/tex] and [tex]P(x) = 4[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]

When we do, we get:

[tex]4 = (1^2 + 1 + 3)(1^2 - 1 + 1) + a(1) + b\\4 = (1 + 1 + 3)(1 - 1 + 1) + a + b\\4 = (5)(1) + a + b\\4 = 5 + a + b\\4 - 5 = 5 - 5 + a + b\\-1 = a + b\\a + b = -1[/tex]

We will call [tex]a + b = -1[/tex] equation 1

From Part 2, we know that [tex]P(-3) = 104[/tex], so we can substitute [tex]x = -3[/tex] and [tex]P(x) = 104[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]

When we do, we get:

[tex]104 = ((-3)^2 + (-3) + 3)((-3)^2 - (-3) + 1) + a(-3) + b\\104 = (9 - 3 + 3)(9 + 3 + 1) - 3a + b\\104 = (9)(13) - 3a + b\\104 = 117 - 3a + b\\104 - 117 = 117 - 117 - 3a + b\\-13 = -3a + b\\(-13)(-1) = (-3a + b)(-1)\\13 = 3a - b\\3a - b = 13[/tex]

We will call [tex]3a - b = 13[/tex] equation 2

Now we can create a system of equations using equation 1 and equation 2

[tex]\left \{ {{a + b = -1} \atop {3a - b = 13}} \right.[/tex]

By adding both equations' right-hand sides together and both equations' left-hand sides together, we can eliminate [tex]b[/tex] and solve for [tex]a[/tex]

So equation 1 + equation 2:

[tex](a + b) + (3a - b) = -1 + 13\\a + b + 3a - b = -1 + 13\\a + 3a + b - b = -1 + 13\\4a = 12\\a = 3[/tex]

Now we can substitute [tex]a = 3[/tex] into either one of the equations, however, since equation 1 has less operations to deal with, we will use equation 1.

So substituting [tex]a = 3[/tex] into equation 1:

[tex]3 + b = -1\\3 - 3 + b = -1 - 3\\b = -4[/tex]

Now that we have both of the values for [tex]a[/tex] and [tex]b[/tex], we can substitute them into the expression for the remainder.

So substituting [tex]a = 3[/tex] and [tex]b = -4[/tex] into [tex]ax + b[/tex]:

[tex]ax + b\\= (3)x + (-4)\\= 3x - 4[/tex]

Therefore, the remainder is [tex]3x - 4[/tex].