At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A student ran out of time on a multiple choice exam and randomly guessed the answers for two problems. Each problem had 5 answer choices - a, b, c, d, e- and only one correct answer. What is the probability that she answered neither of the problems correctly? Do not round your answer. (If necessary, consult a list of formulas.)​

Sagot :

Answer:

there is a 64% chance that the student got both problems wrong

a 32% chance that they got only 1 correct

and a 4% chance that they got both correct

Step-by-step explanation:

There are 25 total possible combinations of answers, with 8 possible combinations where the student would get 1 answer right, and 1 combination where the student would get both answers correct.

[tex]25-9=16[/tex]

[tex]\frac{16}{25} =\frac{x}{100}[/tex]

[tex]\frac{64}{100}[/tex]

[tex]64[/tex]%

[tex]\frac{8}{25} =\frac{y}{100}[/tex]

[tex]\frac{32}{100}[/tex]

[tex]32[/tex]%

[tex]\frac{1}{25} =\frac{z}{100}[/tex]

[tex]\frac{4}{100}[/tex]

[tex]4[/tex]%