Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value of t? (Round your answer to two decimal places.) x1 = 10 cos(2t), y1 = 6 sin(2t) First object x2 = 4 cos(t), y2 = 4 sin(t) Second object t = π/2

Sagot :

Answer:

-  [tex]\frac{4}{\sqrt{29} }[/tex]

Step-by-step explanation:

The equations for the 1st object :

x₁ = 10 cos(2t),  and  y₁ = 6 sin(2t)

2nd object :

x₂ = 4 cos(t), y₂ = 4 sin(t)

Determine rate at which distance between objects will continue to change

solution Attached below

Distance( D )  = [tex]\sqrt{(10cos2(t) - 4cos(t))^2 + (6sin2(t) -4sin(t))^2}[/tex]

hence; dD/dt = - [tex]\frac{4}{\sqrt{29} }[/tex]

View image batolisis