Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
(a) The wavelength of the electron is 202.25885 nm
(b) The minimum energy required to remove the electron is 1.6565 × 10⁻¹⁷ J
(c) The wavelength of the causing radiation is approximately 8.84 nm
(d) X-ray
The question parameters are;
The given parameters of the electron are;
The velocity of the electron, v = 3.6 × 10³ km/s
(a) de Broglie wavelength is given as follows;
λ = h/(m·v)
Where;
λ = The wavelength of the wave
h = Planck's constant = 6.626 × 10⁻³⁴ J·s
m = The mass of the electron = 9.1 × 10⁻³¹ kg
Therefore, we get;
λ = 6.626 × 10⁻³⁴/(9.1 × 10⁻³¹ × 3.6 × 10⁶) = 202.25885 × 10⁻⁶
The wavelength, λ, of the electron is 202.25885 × 10⁻⁶ m = 202.25885 nm
(b) The energy required to remove the electron from the metal surface is known as the work function, W₀, which is given by the following formula
W₀ = h·f₀
Where;
f₀ = The threshold frequency
Given that the threshold frequency, f₀ = 2.50 × 10¹⁶ Hz, we have;
W₀ = 6.626 × 10⁻³⁴ J·s × 2.50 × 10¹⁶ Hz = 1.6565 × 10⁻¹⁷ J
The energy required to remove the electron from the metal surface, W₀ = 1.6565 × 10⁻¹⁷ J
(c) The wavelength of the radiation that caused the photoejection of the electron is given as follows;
The energy of the incoming photon, E = W₀ + (1/2)·m·v²
Where;
v = The velocity of the electron, and m = The mass of the electron
Therefore;
E = 1.6565 × 10⁻¹⁷ + (1/2) × 9.1 × 10⁻³¹ kg × (3.6 × 10⁶ m/s)² = 2.24618 × 10⁻¹⁷ J
We have;
E = h·f
∴ f = (2.24618 × 10⁻¹⁷ J)/(6.626 × 10⁻³⁴ J·s) = 3.38994869 × 10¹⁶ Hz
The speed of light, c = 299,792,458 m/s
From the equation for the speed of light, we have;
λ = c/f
∴ λ = (299,792,458 m/s)/(3.38994869 × 10¹⁶ Hz) = 8.84356919 nm ≈ 8.84 nm
The wavelength of the radiation that caused photoejection of the electron, λ[tex]_{causing \ radiation}[/tex] ≈ 8.84 nm
(d) The kind of electromagnetic radiation used which has a wavelength of 8.84 nm is the X-Ray which are electromagnetic radiation having wavelengths that extend from 10 picometers to 10 nanometers.
Learn more about De Broglie wavelength here;
https://brainly.com/question/19131384
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.