Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
Step-by-step explanation:
Focus: (6,4)
Directrix lies 6 units below the focus, so the parabola opens upwards and focal length p = 6/2 = 3.
The equation of the directrix is y = -2.
The vertex is halfway between focus and directrix, at (6,1).
Equation of the parabola:
y = (1/(4p))(x-6)²+1 = (1/12)(x-6)²+1
The equation of the parabola is [tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
What are parabolas?
Parabolas are used to represent a quadratic equation in the vertex form
The given parameters are:
Focus = (6,4)
Directrix (x) = 6 units below the focus,
Start by calculating the focal length (p)
[tex]p = \frac x2[/tex]
This gives
[tex]p = \frac 62[/tex]
[tex]p = 3[/tex]
Next, calculate the vertex as follows:
[tex](h,k) = (6,2/2)[/tex]
Simplify
[tex](h,k) = (6,1)[/tex]
The equation of the parabola is then calculated a:
[tex]y = \frac{1}{4p}(x - h)^2 + k[/tex]
So, we have:
[tex]y = \frac{1}{4*3}(x - 6)^2 + 1[/tex]
Simplify
[tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
Hence, the equation of the parabola is [tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
Read more about parabola at:
https://brainly.com/question/26738087
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.