Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Step-by-step explanation:
Focus: (6,4)
Directrix lies 6 units below the focus, so the parabola opens upwards and focal length p = 6/2 = 3.
The equation of the directrix is y = -2.
The vertex is halfway between focus and directrix, at (6,1).
Equation of the parabola:
y = (1/(4p))(x-6)²+1 = (1/12)(x-6)²+1
The equation of the parabola is [tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
What are parabolas?
Parabolas are used to represent a quadratic equation in the vertex form
The given parameters are:
Focus = (6,4)
Directrix (x) = 6 units below the focus,
Start by calculating the focal length (p)
[tex]p = \frac x2[/tex]
This gives
[tex]p = \frac 62[/tex]
[tex]p = 3[/tex]
Next, calculate the vertex as follows:
[tex](h,k) = (6,2/2)[/tex]
Simplify
[tex](h,k) = (6,1)[/tex]
The equation of the parabola is then calculated a:
[tex]y = \frac{1}{4p}(x - h)^2 + k[/tex]
So, we have:
[tex]y = \frac{1}{4*3}(x - 6)^2 + 1[/tex]
Simplify
[tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
Hence, the equation of the parabola is [tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
Read more about parabola at:
https://brainly.com/question/26738087
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.