Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
Step-by-step explanation:
Focus: (6,4)
Directrix lies 6 units below the focus, so the parabola opens upwards and focal length p = 6/2 = 3.
The equation of the directrix is y = -2.
The vertex is halfway between focus and directrix, at (6,1).
Equation of the parabola:
y = (1/(4p))(x-6)²+1 = (1/12)(x-6)²+1
The equation of the parabola is [tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
What are parabolas?
Parabolas are used to represent a quadratic equation in the vertex form
The given parameters are:
Focus = (6,4)
Directrix (x) = 6 units below the focus,
Start by calculating the focal length (p)
[tex]p = \frac x2[/tex]
This gives
[tex]p = \frac 62[/tex]
[tex]p = 3[/tex]
Next, calculate the vertex as follows:
[tex](h,k) = (6,2/2)[/tex]
Simplify
[tex](h,k) = (6,1)[/tex]
The equation of the parabola is then calculated a:
[tex]y = \frac{1}{4p}(x - h)^2 + k[/tex]
So, we have:
[tex]y = \frac{1}{4*3}(x - 6)^2 + 1[/tex]
Simplify
[tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
Hence, the equation of the parabola is [tex]y = \frac{1}{12}(x - 6)^2 + 1[/tex]
Read more about parabola at:
https://brainly.com/question/26738087
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.