Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

find the n^th root of z = -2i, n = 6​

Sagot :

Answer:

2^(1/6) (cos(-pi/12)+i sin(-pi/12))

2^(1/6) (cos(3pi/12)+i sin(3pi/12))

2^(1/6) (cos(7pi/12)+i sin(7pi/12))

2^(1/6) (cos(11pi/12)+i sin(11pi/12))

2^(1/6) (cos(5pi/4)+i sin(5pi/4))

2^(1/6) (cos(19pi/12)+i sin(19pi/12))

Step-by-step explanation:

Let's convert to polar form.

-2i=2(cos(A)+i sin(A) )

There is no real part so cos(A) has to be zero and since we want -2 and we already have 2 then we need sin(A)=-1 so let's choose A=-pi/2.

So z=2(cos(-pi/2)+i sin(-pi/2)).

There are actually infinitely many ways we can write this polar form which we will need.

z=2(cos(-pi/2+2pi k)+i sin(-pi/2+2pi k))

where k is an integer

Now let's find the 6 6th roots or z.

2^(1/6) (cos(-pi/12+2pi k/6)+i sin(-pi/12+2pi k/6))

Reducing

2^(1/6) (cos(-pi/12+pi k/3)+i sin(-pi/12+pi k/3))

Plug in k=0,1,2,3,4,5 to find the 6 6th roots.

k=0:

2^(1/6) (cos(-pi/12+pi (0)/3)+i sin(-pi/12+pi (0)/3))

=2^(1/6) (cos(-pi/12)+i sin(-pi/12))

k=1:

2^(1/6) (cos(-pi/12+pi/3)+i sin(-pi/12+pi/3))

2^(1/6) (cos(3pi/12)+i sin(3pi/12))

k=2:

2^(1/6) (cos(-pi/12+2pi/3)+i sin(-pi/12+2pi/3))

2^(1/6) (cos(7pi/12)+i sin(7pi/12))

k=3:

2^(1/6) (cos(-pi/12+3pi/3)+i sin(-pi/12+3pi/3))

2^(1/6) (cos(11pi/12)+i sin(11pi/12))

k=4:

2^(1/6) (cos(-pi/12+4pi/3)+i sin(-pi/12+4pi/3))

2^(1/6) (cos(15pi/12)+i sin(15pi/12))

2^(1/6) (cos(5pi/4)+i sin(5pi/4))

k=5:

2^(1/6) (cos(-pi/12+5pi/3)+i sin(-pi/12+5pi/3))

2^(1/6) (cos(19pi/12)+i sin(19pi/12))