Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
2^(1/6) (cos(-pi/12)+i sin(-pi/12))
2^(1/6) (cos(3pi/12)+i sin(3pi/12))
2^(1/6) (cos(7pi/12)+i sin(7pi/12))
2^(1/6) (cos(11pi/12)+i sin(11pi/12))
2^(1/6) (cos(5pi/4)+i sin(5pi/4))
2^(1/6) (cos(19pi/12)+i sin(19pi/12))
Step-by-step explanation:
Let's convert to polar form.
-2i=2(cos(A)+i sin(A) )
There is no real part so cos(A) has to be zero and since we want -2 and we already have 2 then we need sin(A)=-1 so let's choose A=-pi/2.
So z=2(cos(-pi/2)+i sin(-pi/2)).
There are actually infinitely many ways we can write this polar form which we will need.
z=2(cos(-pi/2+2pi k)+i sin(-pi/2+2pi k))
where k is an integer
Now let's find the 6 6th roots or z.
2^(1/6) (cos(-pi/12+2pi k/6)+i sin(-pi/12+2pi k/6))
Reducing
2^(1/6) (cos(-pi/12+pi k/3)+i sin(-pi/12+pi k/3))
Plug in k=0,1,2,3,4,5 to find the 6 6th roots.
k=0:
2^(1/6) (cos(-pi/12+pi (0)/3)+i sin(-pi/12+pi (0)/3))
=2^(1/6) (cos(-pi/12)+i sin(-pi/12))
k=1:
2^(1/6) (cos(-pi/12+pi/3)+i sin(-pi/12+pi/3))
2^(1/6) (cos(3pi/12)+i sin(3pi/12))
k=2:
2^(1/6) (cos(-pi/12+2pi/3)+i sin(-pi/12+2pi/3))
2^(1/6) (cos(7pi/12)+i sin(7pi/12))
k=3:
2^(1/6) (cos(-pi/12+3pi/3)+i sin(-pi/12+3pi/3))
2^(1/6) (cos(11pi/12)+i sin(11pi/12))
k=4:
2^(1/6) (cos(-pi/12+4pi/3)+i sin(-pi/12+4pi/3))
2^(1/6) (cos(15pi/12)+i sin(15pi/12))
2^(1/6) (cos(5pi/4)+i sin(5pi/4))
k=5:
2^(1/6) (cos(-pi/12+5pi/3)+i sin(-pi/12+5pi/3))
2^(1/6) (cos(19pi/12)+i sin(19pi/12))
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.