Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The horizontal force applied to the block is approximately 1,420.84 N
The known parameters;
The mass of the block, w₁ = 400 kg
The orientation of the surface on which the block rest, w₁ = Horizontal
The mass of the block placed on top of the 400 kg block, w₂ = 100 kg
The length of the string to which the block w₂ is attached, l = 6 m
The coefficient of friction between the surface, μ = 0.25
The state of the system of blocks and applied force = Equilibrium
Strategy;
Calculate the forces acting on the blocks and string
The weight of the block, W₁ = 400 kg × 9.81 m/s² = 3,924 N
The weight of the block, W₂ = 100 kg × 9.81 m/s² = 981 N
Let T represent the tension in the string
The upward force from the string = T × sin(θ)
sin(θ) = √(6² - 5²)/6
Therefore;
The upward force from the string = T×√(6² - 5²)/6
The frictional force = (W₂ - The upward force from the string) × μ
The frictional force, [tex]F_{f2}[/tex] = (981 - T×√(6² - 5²)/6) × 0.25
The tension in the string, T = [tex]F_{f2}[/tex] × cos(θ)
∴ T = (981 - T×√(6² - 5²)/6) × 0.25 × 5/6
Solving, we get;
[tex]T = \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8} \approx 183.27[/tex]
[tex]Frictional \ force, F_{f2} = \left (981 - \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8} \times \dfrac{\sqrt{6^2 - 5^2} }{6} \times 0.25 \right) \approx 219.92[/tex]
The frictional force on the block W₂, [tex]F_{f2}[/tex] ≈ 219.92 N
Therefore;
The force acting the block w₁, due to w₂ [tex]F_{w2}[/tex] = 219.92/0.25 ≈ 879.68
The total normal force acting on the ground, N = W₁ + [tex]\mathbf{F_{w2}}[/tex]
The frictional force from the ground, [tex]\mathbf{F_{f1}}[/tex] = N×μ + [tex]\mathbf{F_{f2}}[/tex] = P
Where;
P = The horizontal force applied to the block
P = (W₁ + [tex]\mathbf{F_{w2}}[/tex]) × μ + [tex]\mathbf{F_{f2}}[/tex]
Therefore;
P = (3,924 + 879.68) × 0.25 + 219.92 ≈ 1,420.84
The horizontal force applied to the block, P ≈ 1,420.84 N
Learn more about friction force here;
https://brainly.com/question/18038995
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.