Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
See Below.
Step-by-step explanation:
We want to prove that:
[tex]\displaystyle \sin^2 A + \sin^2 B \cdot \cos 2A = \sin^2 B + \sin^2 A \cdot \cos 2B[/tex]
Recall that double-angle identity for cosine:
[tex]\displaystyle \begin{aligned} \cos 2x &= \cos^2x - \sin^2 x \\ &= 2\cos^2x -1 \\ &= 1 - 2\sin^2 x\end{aligned}[/tex]
Substitute cos(2A) for its third form:
[tex]\displaystyle \sin^2 A + \sin^2 B \cdot \left(1 - 2\sin^2 A\right) = \sin^2 B + \sin^2 A \cdot \cos 2B[/tex]
Distribute:
[tex]\displaystyle \sin^2 A + \sin^2 B - 2\sin^2B \sin^2A = \sin^2 B + \sin^2 A \cdot \cos 2B[/tex]
Rewrite:
[tex]\displaystyle \sin^2 B + \left(\sin^2 A - 2\sin^2 B\sin^2 A\right)[/tex]
Factor:
[tex]\displaystyle \sin^2 B + \sin^2A\left(1 - 2\sin^2 B\right) = \sin^2 B + \sin^2A\cdot \cos 2B[/tex]
Double-Angle Identity for cosine:
[tex]\displaystyle \sin^2 B + \sin^2 A \cdot \cos 2B \stackrel{\checkmark}{=} \sin ^2 B + \sin^2 A\cdot \cos 2B[/tex]
Hence proven.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.