Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
For each customer, there are only two possible outcomes. Either they will order an alcoholic beverage, or they will not. The probability of a customer ordering an alcoholic beverage is independent of any other customer, which means that the binomial probability distribution is used to solve this question..
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
At a Noodles & Company restaurant, the probability that a customer will order a nonalcoholic beverage is .50
This means that [tex]p = 0.5[/tex]
Sample of 14 customers
This means that [tex]n = 14[/tex]
Probability that at least 7 will order a nonalcoholic beverage
This is:
[tex]P(X \geq 7) = 1 - P(X < 7)[/tex]
In which
[tex]P(X < 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)[/tex]
Then
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{14,0}.(0.5)^{0}.(0.5)^{14} = 0.0001[/tex]
[tex]P(X = 1) = C_{14,1}.(0.5)^{1}.(0.5)^{13} = 0.0009[/tex]
[tex]P(X = 2) = C_{14,2}.(0.5)^{2}.(0.5)^{12} = 0.0056[/tex]
[tex]P(X = 3) = C_{14,3}.(0.5)^{3}.(0.5)^{11} = 0.0222[/tex]
[tex]P(X = 4) = C_{14,4}.(0.5)^{4}.(0.5)^{10} = 0.0611[/tex]
[tex]P(X = 5) = C_{14,5}.(0.5)^{5}.(0.5)^{9} = 0.1222[/tex]
[tex]P(X = 6) = C_{14,6}.(0.5)^{6}.(0.5)^{8} = 0.1833[/tex]
So
[tex]P(X < 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) = 0.0001 + 0.0009 + 0.0056 + 0.0222 + 0.0611 + 0.1222 + 0.1833 = 0.3954[/tex]
[tex]P(X \geq 7) = 1 - P(X < 7) = 1 - 0.3954 = 0.6046[/tex]
0.6046 = 60.46% probability that at least 7 will order a nonalcoholic beverage.
For more on the binomial distribution, you can check https://brainly.com/question/15557838
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.