Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
For each customer, there are only two possible outcomes. Either they will order an alcoholic beverage, or they will not. The probability of a customer ordering an alcoholic beverage is independent of any other customer, which means that the binomial probability distribution is used to solve this question..
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
At a Noodles & Company restaurant, the probability that a customer will order a nonalcoholic beverage is .50
This means that [tex]p = 0.5[/tex]
Sample of 14 customers
This means that [tex]n = 14[/tex]
Probability that at least 7 will order a nonalcoholic beverage
This is:
[tex]P(X \geq 7) = 1 - P(X < 7)[/tex]
In which
[tex]P(X < 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)[/tex]
Then
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{14,0}.(0.5)^{0}.(0.5)^{14} = 0.0001[/tex]
[tex]P(X = 1) = C_{14,1}.(0.5)^{1}.(0.5)^{13} = 0.0009[/tex]
[tex]P(X = 2) = C_{14,2}.(0.5)^{2}.(0.5)^{12} = 0.0056[/tex]
[tex]P(X = 3) = C_{14,3}.(0.5)^{3}.(0.5)^{11} = 0.0222[/tex]
[tex]P(X = 4) = C_{14,4}.(0.5)^{4}.(0.5)^{10} = 0.0611[/tex]
[tex]P(X = 5) = C_{14,5}.(0.5)^{5}.(0.5)^{9} = 0.1222[/tex]
[tex]P(X = 6) = C_{14,6}.(0.5)^{6}.(0.5)^{8} = 0.1833[/tex]
So
[tex]P(X < 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) = 0.0001 + 0.0009 + 0.0056 + 0.0222 + 0.0611 + 0.1222 + 0.1833 = 0.3954[/tex]
[tex]P(X \geq 7) = 1 - P(X < 7) = 1 - 0.3954 = 0.6046[/tex]
0.6046 = 60.46% probability that at least 7 will order a nonalcoholic beverage.
For more on the binomial distribution, you can check https://brainly.com/question/15557838
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.