Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

b) Use Greens theorem to find∫x^2 ydx-xy^2 dy where ‘C’ is the circle x2 + y2 = 4 going counter clock wise.​

Sagot :

It looks like the integral you want to find is

[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy[/tex]

where C is the circle x ² + y ² = 4. By Green's theorem, the line integral is equivalent to a double integral over the disk x ² + y ² ≤ 4, namely

[tex]\displaystyle \iint\limits_{x^2+y^2\le4}\frac{\partial(-xy^2)}{\partial x}-\frac{\partial(x^2y)}{\partial y}\,\mathrm dx\,\mathrm dy = -\iint\limits_{x^2+y^2\le4}(x^2+y^2)\,\mathrm dx\,\mathrm dy[/tex]

To compute the remaining integral, convert to polar coordinates. We take

x = r cos(t )

y = r sin(t )

x ² + y ² = r ²

dx dy = r dr dt

Then

[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy = -\int_0^{2\pi}\int_0^2 r^3\,\mathrm dr\,\mathrm dt \\\\ = -2\pi\int_0^2 r^3\,\mathrm dr \\\\ = -\frac\pi2 r^4\bigg|_{r=0}^{r=2} \\\\ = \boxed{-8\pi}[/tex]

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.