Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

How do I find the Derivative of a Function where the x is a number?

If I was to find d/dx g(1) for example, would I first find the value of the function g(x) at x=1 and then find the derivative of that which becomes 0 because the result would probably be a constant. Or do I first find the derivative of g(x) and then plug in x=1 to calculate it?

Thanks


Sagot :

Given a function g(x), its derivative, if it exists, is equal to the limit

[tex]g'(x) = \displaystyle\lim_{h\to0}\frac{g(x+h)-g(x)}h[/tex]

The limit is some expression that is itself a function of x. Then the derivative of g(x) at x = 1 is obtained by just plugging x = 1. In other words, find g'(x) - and this can be done with or without taking a limit - then evaluate g' (1).

Alternatively, you can directly find the derivative at a point by computing the limit

[tex]g'(1) = \displaystyle\lim_{h\to0}\frac{g(1+h)-g(1)}h[/tex]

But this is essentially the same as the first method, we're just replacing x with 1.

Yet another way is to compute the limit

[tex]g'(1) = \displaystyle\lim_{x\to1}\frac{g(x)-g(1)}{x-1}[/tex]

but this is really the same limit with h = x - 1.

You do not compute g (1) first, because as you say, that's just a constant, so its derivative is zero. But you're not concerned with the derivative of some number, you care about the derivative of a function that depends on a variable.

Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.