Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Determine whether the statement below makes sense or does not make sense. Explain clearly. Based on our​ sample, the​ 95% confidence interval for the mean amount of television watched by adults in a nation is 1.9 to 3.5 hours per day.​ Therefore, there is​ 95% chance that the mean for all adults in the nation will fall somewhere in this range and a​ 5% chance that it will not.
A. The statement makes sense. There is​ 95% probability that the confidence interval limits actually contain the true value of the population​ mean, so the probability it does not fall in this range is ​100%−​95% =​5%.
B. The statement makes sense. There is​ 5% probability that the confidence interval limits do not contain the true value of the sample​ mean, so the probability it does not contain the true value of the population mean is also​ 5%.
C.The statement does not make sense. The probability the population mean is greater than the upper limit is​ 5% and the probability it is less than the lower limit is​ 5%, so the probability it does not is ​5%+​5%=​10%.
D. The statement does not make sense. The population mean is a fixed constant that either falls within the confidence interval or it does not. There is no probability associated with this.

Sagot :

The correct option is A because

The statement makes sense. There is​ 95% probability that the confidence interval limits actually contain the true value of the population​ mean, so the probability it does not fall in this range is ​100%−​95% =​5%.

From the question we are told that:

Confidence interval [tex]CI=95\%[/tex]

Mean [tex]\=x =1.9-3.5hours[/tex]

Level of significance (of the alternative hypothesis)

[tex]\alpha=100-95[/tex]

[tex]\alpha=5\%[/tex]

[tex]\alpha=0.05[/tex]

Generally

There is​ 95% probability that the confidence interval limits actually contain the true value of the population​ mean.

In conclusion

The  it does not fall in this range is Level of significance (of the alternative hypothesis)

​100%−​95% =​5%.

For more information on this visit

https://brainly.com/question/24131141?referrer=searchResults