Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
-2pi/3
Step-by-step explanation:
y = 2 cos 3(x + 2π∕3) +1
y = A sin(B(x + C)) + D
amplitude is A
period is 2π/B
phase shift is C (positive is to the left)
vertical shift is D
We have a shift to the left of 2 pi /3
Answer:
A
Step-by-step explanation:
The standard cosine function has the form:
[tex]\displaystyle y = a\cos (b(x-c)) + d[/tex]
Where |a| is the amplitude, 2π / b is the period, c is the phase shift, and d is the vertical shift.
We have the function:
[tex]\displaystyle y = 2 \cos 3\left(x + \frac{2\pi}{3}\right) + 1[/tex]
We can rewrite this as:
[tex]\displaystyle y = \left(2\right)\cos 3\left(x - \left(-\frac{2\pi}{3}\right)\right) + 1[/tex]
Therefore, a = 2, b = 3, c = -2π/3, and d = 1.
Our phase shift is represented by c. Thus, the phase shift is -2π/3.
Our answer is A.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.