At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

How do I solve this problem? The trouble that I have is evaluating if 2^∞ or ∞³ is larger?

How Do I Solve This Problem The Trouble That I Have Is Evaluating If 2 Or Is Larger class=

Sagot :

For large enough x, exponential functions like 2ˣ will always dominate a polynomial of any degree. This is to say the denominator will always be larger than the numerator (again, for sufficiently large x). So the limit in this case would be 0. (I'll leave a link in comments to a variety of answers regarding this detail.)

But if you've been introduced to L'Hopital's rule: we have

[tex]\displaystyle \lim_{x\to\infty}\frac{5x^3+10}{6\times2^x-1} = \lim_{x\to\infty}\frac{15x^2}{6\ln(2)\times2^x} = \lim_{x\to\infty}\frac{30x}{6\ln^2(2)\times2^x} = \lim_{x\to\infty}\frac{30}{6\ln^3(2)\times2^x} = \frac1\infty = 0[/tex]