Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
ω in terms of m and k is expressed as [tex]\omega = \sqrt{\frac{k}{m} }[/tex]
The given expression is as follows;
[tex]T_s = 2\pi \sqrt{\frac{m}{k} } , \ \ \\\\ T_s = \frac{2\pi}{\omega}[/tex]
To find:
- ω in terms of m and k;
From the given expression above make ω the subject of the formula;
[tex]T_s = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k} } \\\\ \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k} }\\\\ \frac{2\pi}{\omega} = \sqrt{4\pi^2\frac{m}{k} }\\\\square \ both \ sides \ of \ the \ equation;\\\\(\frac{2\pi}{\omega})^2 = 4\pi^2\frac{m}{k} \\\\\frac{4\pi^2}{\omega^2}= \frac{4\pi^2m}{k} \\\\\omega^2 4\pi^2m = k4\pi^2 \\\\divide \ both \ side \ by \ 4\pi ^2 \\\\\omega^2 m = k\\\\divide \ both \ sides \ by \ m\\\\\omega^2 = \frac{k}{m} \\\\[/tex]
[tex]take \ the \ square \ root \ of \ both \ sides \ of \ the \ equation\\\\\omega = \sqrt{\frac{k}{m} }[/tex]
Therefore, ω in terms of m and k is expressed as [tex]\omega = \sqrt{\frac{k}{m} }[/tex]
To learn more about subject of formula visit: https://brainly.com/question/15469690
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.