Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Split up the interval [1, 9] into n subintervals of equal length (9 - 1)/n = 8/n :
[1, 1 + 8/n], [1 + 8/n, 1 + 16/n], [1 + 16/n, 1 + 24/n], …, [1 + 8 (n - 1)/n, 9]
It should be clear that the left endpoint of each subinterval make up an arithmetic sequence, so that the i-th subinterval has left endpoint
1 + 8/n (i - 1)
Then we approximate the definite integral by the sum of the areas of n rectangles with length 8/n and height [tex]f(x_i)[/tex] :
[tex]\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx \approx \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right)[/tex]
Take the limit as n approaches infinity and the approximation becomes exact. So we have
[tex]\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx = \lim_{n\to\infty} \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right) \\\\ = \lim_{n\to\infty} \frac8n \sum_{i=1}^n \left(1+\frac{16}n(i-1)+\frac{64}{n^2}(i-1)^2-4-\frac{32}n(i-1)+6\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=1}^n \left(64(i-1)^2-16n(i-1)+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=0}^{n-1} \left(64i^2-16ni+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(64\sum_{i=0}^{n-1}i^2 - 16n\sum_{i=0}^{n-1}i + 3n^2\sum{i=0}^{n-1}1\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{64(2n-1)n(n-1)}{6} - \frac{16n^2(n-1)}{2} + 3n^3\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{49n^3}3-24n^2+\frac{32n}3\right) \\\\= \lim_{n\to\infty} \frac{8\left(49n^2-72n+32\right)}{3n^2} = \boxed{\frac{392}3}[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.