Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Split up the interval [1, 9] into n subintervals of equal length (9 - 1)/n = 8/n :
[1, 1 + 8/n], [1 + 8/n, 1 + 16/n], [1 + 16/n, 1 + 24/n], …, [1 + 8 (n - 1)/n, 9]
It should be clear that the left endpoint of each subinterval make up an arithmetic sequence, so that the i-th subinterval has left endpoint
1 + 8/n (i - 1)
Then we approximate the definite integral by the sum of the areas of n rectangles with length 8/n and height [tex]f(x_i)[/tex] :
[tex]\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx \approx \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right)[/tex]
Take the limit as n approaches infinity and the approximation becomes exact. So we have
[tex]\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx = \lim_{n\to\infty} \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right) \\\\ = \lim_{n\to\infty} \frac8n \sum_{i=1}^n \left(1+\frac{16}n(i-1)+\frac{64}{n^2}(i-1)^2-4-\frac{32}n(i-1)+6\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=1}^n \left(64(i-1)^2-16n(i-1)+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=0}^{n-1} \left(64i^2-16ni+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(64\sum_{i=0}^{n-1}i^2 - 16n\sum_{i=0}^{n-1}i + 3n^2\sum{i=0}^{n-1}1\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{64(2n-1)n(n-1)}{6} - \frac{16n^2(n-1)}{2} + 3n^3\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{49n^3}3-24n^2+\frac{32n}3\right) \\\\= \lim_{n\to\infty} \frac{8\left(49n^2-72n+32\right)}{3n^2} = \boxed{\frac{392}3}[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.