Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

A block of mass 2 kg starts from rest at the top of a friction quarter of a circle of radius R. The block then slides over frictionless curved surface in the shape of a eventually comes to rest 8 m from the beginning s a horizontal rough surface where e of the horizontal surface. The coefficient kinetic friction between the rough surface and the block is 0.4 . determine the acceleration of the block over the rough surface length 8m​

Sagot :

The acceleration of the block over the rough surface is 1.22625 m/s²

The process through which the acceleration is obtained is presented as follows of approach to

The given parameters are;

Mass of block, m = 2 kg

Nature of the surface of the quarter circle = Frictionless

The length of the horizontal, d = 8 m

The coefficient of friction of the horizontal surface, μ = 0.4

The unknown parameter;

The acceleration of the block over the rough surface

Method;

Find the work done by friction to stop the block and divide the result by the mass of the block

The work done by friction, [tex]W_f[/tex] = (Force of friction) × (Distance the block moves on the rough surface before coming to rest)

[tex]\mathbf{W_f}[/tex] = [tex]\mathbf{F_f}[/tex] × d

[tex]F_f[/tex] = Normal reaction of surface on block, [tex]N_r[/tex] × μ

Normal reaction on block, [tex]\mathbf{N_r}[/tex] = Weight of block

[tex]\mathbf{N_r}[/tex] ≈ 2 kg × 9.81 m/s² = 19.62 N

Therefore;

The work done by friction [tex]\mathbf{W_f}[/tex] = [tex]\mathbf{F_f}[/tex] × d = [tex]\mathbf{N_r}[/tex] × μ × d

[tex]\mathbf{W_f}[/tex] = 19.62 N × 0.4 × 8 m = 62.784 J

The work done by the block, W = Force, F × d

Force, F = m × a

Where;

a = The acceleration of the block

According to the principle of conservation of energy, we have;

[tex]\mathbf{W_f}[/tex]  = W

∴ 19.62 J = 2 kg × a × 8 m

a = 19.62/(2 kg × 8 m) = 1.22625 m/s²

The acceleration of the block over the rough surface, a = 1.22625 m/s²

Learn more about work done due and friction here;

https://brainly.com/question/21854305

https://brainly.com/question/1942288

We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.