Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Split up the boundary of C (which I denote ∂C throughout) into the parabolic segment from (1, 1) to (0, 0) (the part corresponding to y = x ²), and the line segment from (1, 1) to (0, 0) (the part of ∂C on the line y = x).
Parameterize these pieces respectively by
r(t) = x(t) i + y(t) j = t i + t ² j
and
s(t) = x(t) i + y(t) j = (1 - t ) i + (1 - t ) j
both with 0 ≤ t ≤ 1.
The circulation of F around ∂C is given by the line integral with respect to arc length,
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T \,\mathrm ds[/tex]
where T denotes the tangent vector to ∂C. Split up the integral over each piece of ∂C :
• on the parabolic segment, we have
T = dr/dt = i + 2t j
• on the line segment,
T = ds/dt = -i - j
Then the circulation is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(\mathbf i+2t\,\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i-\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (7t^3+10t^5)\,\mathrm dt - 12 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{-\frac7{12}}[/tex]
Alternatively, we can use Green's theorem to compute the circulation, as
[tex]\displaystyle\int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \iint_C\frac{\partial(5y^2)}{\partial x} - \frac{\partial(7xy)}{\partial y}\,\mathrm dx\,\mathrm dy \\\\ = -7\int_0^1\int_{x^2}^x x\,\mathrm dx \\\\ = -7\int_0^1 xy\bigg|_{y=x^2}^{y=x}\,\mathrm dx \\\\ =-7\int_0^1(x^2-x^3)\,\mathrm dx = -\frac7{12}[/tex]
The flux of F across ∂C is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N \,\mathrm ds[/tex]
where N is the normal vector to ∂C. While T = x'(t) i + y'(t) j, the normal vector is N = y'(t) i - x'(t) j.
• on the parabolic segment,
N = 2t i - j
• on the line segment,
N = - i + j
So the flux is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(2t\,\mathbf i-\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i+\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (14t^4-5t^4)\,\mathrm dt - 2 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{\frac{17}{15}}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.