At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Split up the boundary of C (which I denote ∂C throughout) into the parabolic segment from (1, 1) to (0, 0) (the part corresponding to y = x ²), and the line segment from (1, 1) to (0, 0) (the part of ∂C on the line y = x).
Parameterize these pieces respectively by
r(t) = x(t) i + y(t) j = t i + t ² j
and
s(t) = x(t) i + y(t) j = (1 - t ) i + (1 - t ) j
both with 0 ≤ t ≤ 1.
The circulation of F around ∂C is given by the line integral with respect to arc length,
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T \,\mathrm ds[/tex]
where T denotes the tangent vector to ∂C. Split up the integral over each piece of ∂C :
• on the parabolic segment, we have
T = dr/dt = i + 2t j
• on the line segment,
T = ds/dt = -i - j
Then the circulation is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(\mathbf i+2t\,\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i-\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (7t^3+10t^5)\,\mathrm dt - 12 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{-\frac7{12}}[/tex]
Alternatively, we can use Green's theorem to compute the circulation, as
[tex]\displaystyle\int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \iint_C\frac{\partial(5y^2)}{\partial x} - \frac{\partial(7xy)}{\partial y}\,\mathrm dx\,\mathrm dy \\\\ = -7\int_0^1\int_{x^2}^x x\,\mathrm dx \\\\ = -7\int_0^1 xy\bigg|_{y=x^2}^{y=x}\,\mathrm dx \\\\ =-7\int_0^1(x^2-x^3)\,\mathrm dx = -\frac7{12}[/tex]
The flux of F across ∂C is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N \,\mathrm ds[/tex]
where N is the normal vector to ∂C. While T = x'(t) i + y'(t) j, the normal vector is N = y'(t) i - x'(t) j.
• on the parabolic segment,
N = 2t i - j
• on the line segment,
N = - i + j
So the flux is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(2t\,\mathbf i-\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i+\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (14t^4-5t^4)\,\mathrm dt - 2 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{\frac{17}{15}}[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.