Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The answer above is completely correct, but it may help the student to see how to reach it:
We seek a square root of
3
−
2
√
2
. This must have the form
a
+
b
√
2
.
(
a
+
b
√
2
)
2
=
a
2
+
2
a
b
√
2
+
2
b
2
So
a
2
+
2
b
2
=
3
and
2
a
b
=
−
2
⇒
a
b
=
−
1
These are two simultaneous equations for
a
and
b
.
Rearrange the second:
b
=
−
1
a
Substitute into the first:
a
2
+
2
a
2
=
3
a
4
+
2
=
3
a
2
a
4
−
3
a
2
+
2
=
0
Note that this is a quadratic in
a
2
:
(
a
2
)
2
−
3
(
a
2
)
+
2
=
0
Factorise:
(
a
2
−
2
)
(
a
2
−
1
)
=
0
This gives us two possible solutions for
a
2
:
2
and
1
, and so the four solutions for
a
:
±
√
2
and
±
1
.
We are looking for integer solutions for
a
, and so
±
1
are possible solutions. But the other two are possible too - they can simply be folded in to the
√
2
term. This wouldn't have been possible if we'd had the root of some other number in the solution for
a
, but this solution is a special case.
Now use the second equation to deduce the four equivalent solutions for
b
:
b
=
−
1
a
b
=
¯¯¯¯¯
+
1
√
2
=
¯¯¯¯¯
+
1
2
√
2
and
¯¯¯¯
+
1
.
So we have the four solution pairs
(
a
,
b
)
:
(
√
2
,
−
1
2
√
2
)
(
−
√
2
,
1
2
√
2
)
(
1
,
−
1
)
(
−
1
,
1
)
This is a bit suspicious - we expect only two solutions, positive and negative square roots, so we wonder if some of these are identical to each other: When we substitute them in to our desired expression
a
+
b
√
2
, we get:
√
2
−
1
2
√
2
√
2
=
−
1
+
√
2
−
√
2
+
1
2
√
2
√
2
=
1
−
√
2
1
−
√
2
−
1
+
√
2
So the two solutions with
√
2
are identical to the two simpler solutions, so we can get rid of them. We now have two solutions, positive and negative square roots:
1
−
√
2
−
1
+
√
2
When we take the written square root of a quantity, it is implied that the desired root is the positive root, the "principal value" of the square root function. So we take the single solution that comes from
a
=
+
1
:
1
−
√
2
Double check: Make sure that this produces the desired answer:
(
1
−
√
2
)
2
=
1
−
2
√
2
+
2
=
3
−
2
√
2
I think this will help you
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.