Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The depth of the mirror of the cross-section of a searchlight would be 8.33 cm if the light bub has a vertex at 3 cm and the mirror is 20 centimeters across at the origin.
A cross-section is perpendicular to the axis of the symmetry goes through the vertex of the parabola. The cross-sectional shape of the mirrored section of most searchlights or spotlights is parabolic.
- It helps in maximizing the output of light in one direction.
- The equation of the cross-section of the parabola is - [tex]y^{2} = 4ax[/tex], where a is the focus and x is the depth of the mirror from its origin.
Given:
a = 3
y = [tex]\frac{20}{2}[/tex] cm = 10 cm
Solution:
from the equation [tex]y^{2} = 4ax[/tex]
[tex]y^{2} = 4*3*x\\ y^{2} = 12x[/tex]
putting x, 10 cm in the equation
[tex]x=\frac{10^{2} }{12} \\\\x= \frac{100}{12} \\\\x= 8.33 cm[/tex]
thus, the depth of the mirror would be - 8.33 cm
Learn more about other problems of the parabola:
https://brainly.com/question/12793264
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.