At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let a be the first term and d the common difference between consecutive terms. Then the next few terms in the sequence are
a + d
a + 2d
a + 3d
and so on, up to the k-th term
a + (k - 1) d
The sum of the first n terms of this sequence is
[tex]\displaystyle S_n = \sum_{k=1}^n(a+(k-1)d) = 12n-2n^2[/tex]
Expanding the sum, we have
[tex]\displaystyle S_n = \sum_{k=1}^n (a+(k-1)d) \\\\ S_n = \sum_{k=1}^n(a-d+dk) \\\\ S_n = (a-d)\sum_{k=1}^n1+d\sum_{k=1}^nk \\\\ S_n = (a-d)n+\frac{d}2n(n+1) \\\\ S_n = (a-d)n+\frac{d}2(n^2+n) \\\\ S_n = \left(a-\frac{d}2\right)n+\frac{d}2n^2[/tex]
It follows that
a - d/2 = 12
d/2 = -2
Solve these equations for a and d.
d/2 = -2 ==> d = -4
a - d/2 = a + 2 = 12 ==> a = 10
So the sequence is
10, 6, 2, -2, -6, -10, -14, …
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.