Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
The sequence has first term 7 and common difference is 8.
So the sequence is f(n)=7 + 8(n-1)
Step-by-step explanation:
Let a be the first term.
Let a+d be the second term where d is the common difference.
Then a+2d is the third....
And a+(n-1)d is the nth term.
Adding these terms we get:
an+(n-1)(n)/2×d
For the first term of this sum I seen we had n amount of a's and for the second term I used the well known identity sum of the first n positive integers is n(n+1)/2.
Let's simplify:
an+(n-1)(n)/2×d
Distribute:
an+(n^2d/2)-(nd/2)
Find common denominator:
(2an/2)+(n^2d/2)-(nd/2)
Combine terms into one:
(2an+n^2d-nd)/2
Reorder terms:
(n^2d+2an-nd)/2
Regroup terms:
(n^2d+(2a-d)n)/2
We want the following sum though:
4n^2+3n
This means d/2=4 (so d=8) and (2a-d)/2=3.
So plug d=8 into second equation to solve for a.
(2a-8)/2=3
2a-8=6
2a=14
a=7
The sequence has first term 7 and common difference is 8.
So the sequence is f(n)=7 + 8(n-1).
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.