At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Find a pair of polar coordinates for the point with rectangular coordinates (5, –5).

Sagot :

Answer:

(5*sqrt(2), 5pi/4)

Step-by-step explanation:

In Polar coordinates, tan(theta)=y/x and r=sqrt(x^2+y^2)

tan(theta)=-5/5=-1. Theta=5pi/4

r=sqrt(5^2+5^2)=5*sqrt(2)

Hence the Polar coordinate is (5*sqrt(2), 5pi/4)

The polar coordinate is [tex](5\sqrt{2},\frac{-\pi }{4} )[/tex].

What is polar coordinate system?

The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.

How to convert rectangular coordinates to polar coordinates?

To convert rectangular coordinate (x, y) to polar coordinate(r, θ) by using some formula

tanθ = y/x and [tex]r =\sqrt{x^{2} +y^{2} }[/tex]

According to the given question

We have

A rectangular coordinate (5, -5).

⇒ x = 5 and y = -5

Therefore,

[tex]r=\sqrt{(5)^{2} +(-5)^{2} } =\sqrt{25+25} =\sqrt{50} =5\sqrt{2}[/tex]

and

tanθ = [tex]\frac{-5}{5} =-1[/tex]

⇒ θ = [tex]tan^{-1} (-1)[/tex] = [tex]-\frac{\pi }{4}[/tex]

Therefore, the polar coordinate is [tex](5\sqrt{2},\frac{-\pi }{4} )[/tex].

Learn more about polar coordinates here:

https://brainly.com/question/1269731

#SPJ2

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.