Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Explanation:
Let [tex]R_1[/tex] and [tex]R_2[/tex] be the the resistances of the resistors. We are given that
[tex]R_1 + R_2 = 690\:Ω\:\:\:\:\:\:\:(1)[/tex]
and
[tex]\dfrac{1}{R_1} + \dfrac{1}{R_2} = \dfrac{1}{118\:Ω}\:\:\:\:\:(2)[/tex]
From Eqn(1), we can write
[tex]R_2 = 690\:Ω - R_1[/tex]
and then plug this into Eqn(2):
[tex]\dfrac{1}{R_1} + \dfrac{1}{690\:Ω - R_1} = \dfrac{1}{118\:Ω}[/tex]
or
[tex]\dfrac{690\:Ω}{(690\:Ω)R_1 - R_1^2}= \dfrac{1}{118\:Ω}[/tex]
[tex]\Rightarrow R_1^2 - (690\:Ω)R_1 + (690\:Ω)(118\:Ω)= 0[/tex]
or
[tex]R_1^2 - 690R_1 + 81420 = 0[/tex]
Using the quadratic formula, we find that the above equation has two roots:
[tex]R_1 = 151.1\:Ω,\:\:538.9\:Ω[/tex]
This means that if you choose one root value for [tex]R_1[/tex], the other root will be the value for [tex]R_2[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.