Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Indicate the equation of the line, in standard form, that is the perpendicular bisector of the segment with endpoints (4, 1) and (2, -5).

Sagot :

9514 1404 393

Answer:

  x +3y = -3

Step-by-step explanation:

The midpoint of the segment with the given end points is ...

  M = ((4, 1) +(2, -5))/2 = (6, -4)/2 = (3, -2)

The difference between coordinates of the given points is ...

  (∆x, ∆y) = (4, 1) -(2, -5) = (2, 6)

__

The equation of the perpendicular bisector can be written as ...

  ∆x(x -h) +∆y(y -k) = 0 . . . . line through (h, k) ⊥ to one with slope ∆y/∆x

  2(x -3) +6(y -(-2)) = 0

  2x +6y +6 = 0 . . . . . simplify to a general-form equation

To put this in standard form, we need the constant on the right, and all numbers mutually prime. We can subtract 6 and divide by 2 to get there.

  2x +6y = -6

  x + 3y = -3

View image sqdancefan
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.