At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
[tex]\displaystyle \left(\frac{-(m^{2}-1)\, x + 2\, m\, y - 2\, m \, c}{m^{2} + 1},\, \frac{(m^{2} - 1)\, y + 2\, m \, x + 2\, c}{m^{2} + 1}\right)[/tex].
Step-by-step explanation:
Consider the line that is perpendicular to [tex]y = m\, x + c[/tex] and goes through [tex](x,\, y)[/tex].
Both [tex](x,\, y)[/tex] and the reflection would be on this new line. Besides, the two points would be equidistant from the intersection of this new line and line [tex]y = m\, x + c[/tex].
Hence, if the vector between [tex](x,\, y)[/tex] and that intersection could be found, adding twice that vector to [tex](x,\, y)\![/tex] would yield the coordinates of the reflection.
Since this new line is perpendicular to line [tex]y = m\, x + c[/tex], the slope of this new line would be [tex](-1/m)[/tex].
Hence, [tex]\langle 1,\, -1/m\rangle[/tex] would be a direction vector of this new line.
[tex]\langle m,\, -1\rangle[/tex] (a constant multiple of [tex]\langle 1,\, -1/m\rangle[/tex] would also be a direction vector of this new line.)
Both [tex](x,\, y)[/tex] and the aforementioned intersection are on this new line. Hence, their position vectors would differ only by a constant multiple of a direction vector of this new line.
In other words, for some constant [tex]\lambda[/tex], [tex]\langle x,\, y \rangle + \lambda\, \langle m,\, -1 \rangle = \langle x + \lambda \, m,\, y - \lambda \rangle[/tex] would be the position vector of the reflection of [tex](x,\, y)[/tex] (the position vector of [tex](x,\, y)\![/tex] is [tex]\langle x,\, y \rangle[/tex].)
[tex]( x + \lambda \, m,\, y - \lambda )[/tex] would be the coordinates of the intersection between the new line and [tex]y = m\, x + c[/tex]. [tex]\lambda\, \langle m,\, -1 \rangle[/tex] would be the vector between [tex](x,\, y)[/tex] and that intersection.
Since that intersection is on the line [tex]y = m\, x + c[/tex], its coordinates should satisfy:
[tex]y - \lambda = m\, (x + \lambda \, m) + c[/tex].
Solve for [tex]\lambda[/tex]:
[tex]y - \lambda = m\, x + m^{2}\, \lambda + c[/tex].
[tex]\displaystyle \lambda = \frac{y - m\, x - c}{m^{2} + 1}[/tex].
Hence, the vector between the position of [tex](x,\, y)[/tex] and that of the intersection would be:
[tex]\begin{aligned} & \lambda\, \langle m,\, -1 \rangle \\= \; & \left\langle \frac{m\, (y - m\, x - c)}{m^{2} + 1},\, \frac{(-1)\, (y - m\, x - c)}{m^{2} + 1}\right\rangle \\ =\; &\left\langle \frac{-m^{2}\, x + m\, y - m\, c }{m^{2} + 1},\, \frac{-y + m\, x + c}{m^{2} + 1}\right\rangle \end{aligned}[/tex].
Add twice the amount of this vector to position of [tex](x,\, y)[/tex] to find the position of the reflection, [tex]\langle x,\, y \rangle + 2\, \lambda \,\langle m,\, -1 \rangle[/tex].
[tex]x[/tex]-coordinate of the reflection:
[tex]\begin{aligned} & x + 2\, \lambda\, m \\ = \; & x + \frac{-2\, m^{2}\, x + 2\, m \, y - 2\, m \, c}{m^{2} + 1} \\ =\; & \frac{-(m^{2} - 1) \, x + 2\, m \, y - 2\, m \, c}{m^{2} + 1}\end{aligned}[/tex].
[tex]y[/tex]-coordinate of the reflection:
[tex]\begin{aligned} & y + (-2\, \lambda)\\ = \; & y + \frac{- 2\, y + 2\, m\, x + 2\, c}{m^{2} + 1} \\ =\; & \frac{(m^{2} - 1) \, y + 2\, m \, x + 2\, m \, c}{m^{2} + 1}\end{aligned}[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.