Answered

Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Write the factors of [tex] {a}^{3} + {b}^{3} .[/tex]​

Sagot :

Step-by-step explanation:

[tex]a {}^{3} + b {}^{3} [/tex]

Notice how that for both a and b are raised to an odd power. This means we can factor this by a binomial raised to an odd power.

Let divide this by

[tex]a + b[/tex]

Since that is also a odd power.

[tex]( {a}^{3} + {b}^{3} ) \div (a + b)[/tex]

We get

a quotient of

[tex]( {a}^{2} - ab + {b}^{2} )[/tex]

So our factors are

[tex](a + b)( {a}^{2} - ab + {b}^{2} )[/tex]

Answer:

[tex](a+b)(a^{2} -ab+b^{2} )[/tex]

Step-by-step explanation:

[tex]\textbf{We need to factor this expression}[/tex] [tex]\textbf{by applying the sum of two cubes rule:}[/tex]

[tex]\Longrightarrow[/tex] [tex]A^{3} +B^{3} =(A+B)(A^{2} -AB+B^{2} )[/tex]

Here,  

A= a

B= b

So, [tex](a+b)(a^{2} -ab+b^{2} )[/tex]

[tex]\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto[/tex]

[tex]\textsl{OAmalOHopeO}[/tex]