Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Step-by-step explanation:
[tex]a {}^{3} + b {}^{3} [/tex]
Notice how that for both a and b are raised to an odd power. This means we can factor this by a binomial raised to an odd power.
Let divide this by
[tex]a + b[/tex]
Since that is also a odd power.
[tex]( {a}^{3} + {b}^{3} ) \div (a + b)[/tex]
We get
a quotient of
[tex]( {a}^{2} - ab + {b}^{2} )[/tex]
So our factors are
[tex](a + b)( {a}^{2} - ab + {b}^{2} )[/tex]
Answer:
[tex](a+b)(a^{2} -ab+b^{2} )[/tex]
Step-by-step explanation:
[tex]\textbf{We need to factor this expression}[/tex] [tex]\textbf{by applying the sum of two cubes rule:}[/tex]
[tex]\Longrightarrow[/tex] [tex]A^{3} +B^{3} =(A+B)(A^{2} -AB+B^{2} )[/tex]
Here,
A= a
B= b
So, [tex](a+b)(a^{2} -ab+b^{2} )[/tex]
[tex]\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto[/tex]
[tex]\textsl{OAmalOHopeO}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.