Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
It looks like we're given the Laplace transform of f(t),
[tex]F(p) = L_p\left\{f(t)\right\} = \dfrac6{p(2p^2+4p+10)} = \dfrac3{p(p^2+2p+5)}[/tex]
Start by splitting up F(p) into partial fractions:
[tex]\dfrac3{p(p^2+2p+5)} = \dfrac ap + \dfrac{bp+c}{p^2+2p+5} \\\\ 3 = a(p^2+2p+5) + (bp+c)p \\\\ 3 = (a+b)p^2 + (2a+c)p + 5a \\\\ \implies \begin{cases}a+b=0 \\ 2a+c=0 \\ 5a=3\end{cases} \implies a=\dfrac35,b=-\dfrac35, c=-\dfrac65[/tex]
[tex]F(p) = \dfrac3{5p} - \dfrac{3p+6}{5(p^2+2p+5)}[/tex]
Complete the square in the denominator,
[tex]p^2+2p+5 = p^2+2p+1+4 = (p+1)^2+4[/tex]
and rewrite the numerator in terms of p + 1,
[tex]3p+6 = 3(p+1) + 3[/tex]
Then splitting up the second term gives
[tex]F(p) = \dfrac3{5p} - \dfrac{3(p+1)}{5((p+1)^2+4)} - \dfrac3{5((p+1)^2+4)}[/tex]
Now take the inverse transform:
[tex]L^{-1}_t\left\{F(p)\right\} = \dfrac35 L^{-1}_t\left\{\dfrac1p\right\} - \dfrac35 L^{-1}_t\left\{\dfrac{p+1}{(p+1)^2+2^2}\right\} - \dfrac3{5\times2} L^{-1}_t\left\{\dfrac2{(p+1)^2+2^2}\right\} \\\\ L^{-1}_t\left\{F(p)\right\} = \dfrac35 - \dfrac35 e^{-t} L^{-1}_t\left\{\dfrac p{p^2+2^2}\right\} - \dfrac3{10} e^{-t} L^{-1}_t\left\{\dfrac2{p^2+2^2}\right\} \\\\ \implies \boxed{f(t) = \dfrac35 - \dfrac35 e^{-t} \cos(2t) - \dfrac3{10} e^{-t} \sin(2t)}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.