Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

reduce the following rational expression to the lowest form

[tex]\frac{64x^{5} - 64x}{( 8x^{2} +8) (2x +2) }[/tex]

please answer this. But no spam answers please
hurry


Sagot :

Answer:

4x(x - 1)

Step-by-step explanation:

Factor the numerator and denominator

64[tex]x^{5}[/tex] - 64x ← factor out 64x from both terms

= 64x([tex]x^{4}[/tex] - 1) ← difference of squares

= 64x(x² - 1)(x² + 1) ← x² - 1 is also a difference of squares

= 64x(x - 1)(x + 1)(x² + 1)

---------------------------------

(8x² + 8)(2x + 2) ← factor out 8 and 2 from each factor

= 8(x² + 1) × 2(x + 1)

= 16(x² + 1)(x + 1)

Then expression can be written as

[tex]\frac{64x(x-1)(x+1)(x^2+1)}{16(x^2+1)(x+1)}[/tex] ← cancel (x² + 1) and (x + 1) on numerator/ denominator

= [tex]\frac{64x(x-1)}{16}[/tex] ← cancel common factor 16 on numerator/ denominator

= 4x(x - 1)