Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
5
Answer:
1050
Step-by-step explanation:
Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.
There is a easier method.
E.g: Natural Numbers that are divisible by a Nth Number. is the same as adding the Nth Numbers to a multiple of that Nth Term. For example, let say we need to find numbers divisible by 2. We know that 4 is divisible by 2 because 4/2=2. We can add the Nth numbers which is 2 to 4. 4+2=6. And 6 is divisible by 2 because 6/2=3. We can call this a arithmetic series. A series which has a pattern of adding a common difference
Back to the problem, we can use the sum of arithmetic series formula,
[tex]y = x( \frac{z {}^{1} + {z}^{n} }{2} )[/tex]
Where x is the number of terms in our sequence. Z1 is the fist term of our series. ZN is our last term. And y is the sum of all of the terms
The first term is 5, the numbers of terms being added is 20 because 100/5=20. The last term is 100.
[tex]y = 20( \frac{5 + 100}{2} )[/tex]
[tex]y = 20( \frac{105}{2} )[/tex]
[tex]y = 1050[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.