Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

2067 Supp Q.No. 2a Find the sum of all the natural numbers between 1 and 100 which are divisible by 5. Ans: 1050 ​

Sagot :

5

Answer:

1050

Step-by-step explanation:

Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.

There is a easier method.

E.g: Natural Numbers that are divisible by a Nth Number. is the same as adding the Nth Numbers to a multiple of that Nth Term. For example, let say we need to find numbers divisible by 2. We know that 4 is divisible by 2 because 4/2=2. We can add the Nth numbers which is 2 to 4. 4+2=6. And 6 is divisible by 2 because 6/2=3. We can call this a arithmetic series. A series which has a pattern of adding a common difference

Back to the problem, we can use the sum of arithmetic series formula,

[tex]y = x( \frac{z {}^{1} + {z}^{n} }{2} )[/tex]

Where x is the number of terms in our sequence. Z1 is the fist term of our series. ZN is our last term. And y is the sum of all of the terms

The first term is 5, the numbers of terms being added is 20 because 100/5=20. The last term is 100.

[tex]y = 20( \frac{5 + 100}{2} )[/tex]

[tex]y = 20( \frac{105}{2} )[/tex]

[tex]y = 1050[/tex]