Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

prove that root 3 + root 7 is irrational


Sagot :

Answer:

√3+√7 is irrational.

Step-by-step explanation:

Let us assume that √3+√7 is rational.

That is , we can find coprimes a and b (b≠0) such that \sqrt{3}+\sqrt{7}=\sqrt{a}{b}

3

+

7

=

a

b

Therefore,

\sqrt{7}=\frac{a}{b}-\sqrt{3}

7

=

b

a

3

Squaring on both sides ,we get

7=\frac{a^{2}}{b^{2}}+3-2\times \frac{a}{b}\times \sqrt{3}7=

b

2

a

2

+3−2×

b

a

×

3

Rearranging the terms ,

\begin{gathered}2\times \frac{a}{b}\times \sqrt{3}=\frac{a^{2}}{b^{2}}+3-7\\=\frac{a^{2}}{b^{2}}-4\end{gathered}

b

a

×

3

=

b

2

a

2

+3−7

=

b

2

a

2

−4

\implies 2\times \frac{a}{b}\times \sqrt{3}=\frac{a^{2}-4b^{2}}{b^{2}}⟹2×

b

a

×

3

=

b

2

a

2

−4b

2

\begin{gathered}\implies \sqrt{3}=\frac{a^{2}-4b^{2}}{b^{2}}\times \frac{b}{2a}\\=\frac{a^{2}-4b^{2}}{2ab}\end{gathered}

3

=

b

2

a

2

−4b

2

×

2a

b

=

2ab

a

2

−4b

2

Since, a and b are integers , \frac{(a^{2}-4b^{2})}{2ab}

2ab

(a

2

−4b

2

)

is rational ,and so √3 also rational.

But this contradicts the fact that √3 is irrational.

This contradiction has arisen because of our incorrect assumption that √3+√7 is rational.

Hence, √3+√7 is irrational.