Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

As above, let
$f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2}.$Give a polynomial $g(x)$ so that $f(x) + g(x)$ has a horizontal asymptote of $y=0$ as $x$ approaches positive infinity.


As Above Let Fx 3cdotfracx4x3x21x2x2Give A Polynomial Gx So That Fx Gx Has A Horizontal Asymptote Of Y0 As X Approaches Positive Infinity class=

Sagot :

caylus

Answer:

Hello,

Step-by-step explanation:

[tex]\dfrac{f(x)}{3} =\dfrac{x^4+x^3+x^2+1}{(x-1)(x+2)} \\\\=\dfrac{(x^2+3)(x-1)(x+2)-3x+7}{(x-1)(x+2)} \\=x^2+3-\dfrac{3x-7}{(x-1)(x+2)} \\\\=x^2+3-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} =-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\\ \lim_{x \to +\infty} (\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} )\\\\=0+0=0\\\\\\P(x)=-x^2-3[/tex]

Answer:

[tex]g(x)=-3x^2-9[/tex]

Explanation:

[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]

+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]

We need p(x) need to be a degree 2 polynomial so the numerator of the second fraction is degree 4. Our goal is to cancel the terms of the first fraction's numerator that are of degree 2 or higher.

So let p(x)=ax^2+bx+c.

[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]

+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]

Plug in our p:

[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]

+[tex]\frac{(ax^2+bx+c)(x^2+x-2)}{x^2+x-2}[/tex]

Take a break to multiply the factors of our second fraction's numerator.

Multiply:

[tex](ax^2+bx+c)(x^2+x-2)[/tex]

=[tex]ax^4+ax^3-2ax^2[/tex]

+[tex]bx^3+bx^2-2bx[/tex]

+[tex]cx^2+cx-2c[/tex]

=[tex]ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)-2c[/tex]

Let's go back to the problem:

[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]

+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex]

Let's distribute that 3:

[tex]\frac{3x^4+3x^3+2x^2+3}{x^2+x-2}[/tex]

+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex

So this forces [tex]a=-3[/tex].

Next we have [tex]a+b=-3[/tex]. Based on previous statement this forces [tex]b=0[/tex].

Next we have [tex]-2a+b+c=-3[/tex]. With [tex]b=0[/tex] and [tex]a=-3[/tex], this gives [tex]6+0+c=-3[/tex].

So [tex]c=-9[tex].

Next we have the x term which we don't care about zeroing out, but we have [tex]-2b+c[/tex] which equals [tex]-2(0)+-9=-9[/tex].

Lastly, [tex]-2c=-2(-9)=18[/tex].

This makes [tex]p(x)=-3x^2-9[/tex].

This implies [tex]g(x)\frac{(-3x^2-9)(x^2+x-2)}{x^2+x-2}[/tex] or simplified [tex]g(x)=-3x^2-9[/tex]

We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.