Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
9514 1404 393
Answer:
5i) f(x) = 3·13^x +5
5ii) f(x) = -6·(1/2)^x +5
6) f(x) = 3·8^x -1
9a) (1, 0), (0, -3)
9b) (2, 0), (0, 8)
Step-by-step explanation:
5. The horizontal asymptote is y = c. To meet the requirements of the problem, you must choose c=5 and any other (non-zero) numbers for 'a' and 'b'. (You probably want 'b' to be positive, so as to avoid complex numbers.)
i) f(x) = 3·13^x +5
ii) f(x) = -6·(1/2)^x +5
__
6. You already know c=-1, so put x=0 in the equation and solve for 'a'. As in problem 5, 'b' can be any positive value.
f(0) = 2 = a·b^0 -1
3 = a
One possible function is ...
f(x) = 3·8^x -1
__
9. The x-intercept is the value of x that makes y=0. We can solve for the general case:
0 = a·b^x +c
-c = a·b^x
-c/a = b^x
Taking logarithms, we have ...
log(-c/a) = x·log(b)
[tex]\displaystyle x=\frac{\log\left(-\dfrac{c}{a}\right)}{\log(b)}=\log_b\left(-\dfrac{c}{a}\right)[/tex]
Of course, the y-intercept is (a+c), since the b-factor is 1 when x=0.
a) x-intercept: log2(6/3) = log2(2) = 1, or point (1, 0)
y-intercept: 3-6 = -3, or point (0, -3)
b) x-intercept: log3(9/1) = log3(3^2) = 2, or point (2, 0)
y-intercept: -1 +9 = 8, or point (0, 8)
_____
Additional comment
It is nice to be comfortable with logarithms. It can be helpful to remember that a logarithm is an exponent. Even so, you can solve the x-intercepts of problem 9 using the expression we had just before taking logarithms.
a) 6/3 = 2^x ⇒ 2^1 = 2^x ⇒ x=1
b) -9/-1 = 3^x ⇒ 3^2 = 3^x ⇒ x=2
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.